Diario delle lezioni di Algoritmi e Strutture Dati (modulo 1), a.a. 2025/26.

1.

(7/10/25). Introduzione al corso. Motivazioni e concetti fondamentali. Un primo
esempio: il problema di trovare una moneta falsa (piu pesante) fra n monete
usando una bilancia a due piatti.

(9/10/25). 11 problema del calcolo dell’n-esimo numero di Fibonacci. Un
algoritmo numerico e un algoritmo ricorsivo. Analisi della complessita
temporale dell’algoritmo ricorsivo. Un algoritmo iterativo di complessita
temporale O(n) e di complessita spaziale O(n) (Fibonacci3). Portare la memoria
a O(1): Fibonacci4. Introduzione informale alla notazione asintotica. Algoritmo
con complessita O(log n) per il calcolo dell’n-simo numero di Fibonacci.
Discussione della complessita spaziale degli algoritmi ricorsivi Fibonacci2 e
Fibonaccib6.

(14/10/25) Modello di calcolo RAM. Costi uniformi e logaritmici. Complessita
caso peggiore e caso medio. Notazioni asintotiche: O-grande, Omega-grande,
Theta. O-piccolo, Omega-piccolo. Definizioni e semplici esempi. Proprieta.
Usare la notazione asintotica nelle analisi della complessita computazionale
degli algoritmi.

(16/10/25) Analisi della complessita nel caso medio: un esempio. Il problema
della ricerca di un elemento in un insieme: ricerca sequenziale e ricerca binaria.
Equazioni di ricorrenza. Metodo dell’iterazione. Metodo che usa 1’albero della
ricorsione.

(21/10/25) Ancora sulle equazioni di ricorrenza. Metodo della sostituzione.
Teorema Fondamentale delle Ricorrenze (Master). Semplici esempi. Quando
non si puo applicare. Metodo del cambiamento di variabile.

(23/10/25). 11 Problema dell’ordinamento. Un algoritmo semplice ma
inefficiente: il Selection Sort. Un algoritmo migliore: il MergeSort. Un altro
algoritmo che usa la tecnica divide et impera: il QuickSort: analisi del caso
peggiore, migliore, e intuizioni sul caso medio. Discussione versione
randomizzata del QuickSort e differenza fra complessita nel caso medio e tempo
atteso di un algoritmo randomizzato.

(28/10/25). Progettare algoritmi efficienti attraverso la progettazione di strutture
dati efficienti. Un esempio: 1'HeapSort - che ordina in loco n elementi in tempo
O(n log n) nel caso peggiore.

(30/10/25). Delimitazioni superiori e inferiori di algoritmi e problemi. Un lower
bound alla complessita temporale necessaria per ordinare n elementi (per una
classe di algoritmi ragionevoli, quelli basati su confronti). Un algoritmo veloce
per ordinare interi “piccoli”: IntegerSort.

(04/11/25). Ancora algoritmi di ordinamento non basati su confronti. Una
variante dell’IntegerSort per ordinare n record con chiavi intere: BucketSort. Un



10.

11.

12.

13.

14.

15.

16.

algoritmo veloce per ordinare interi “grandi”: il RadixSort. Discussione del
seguente esercizio: dato un array di n interi compresi fra 1 e k, costruire in
tempo O(n+k) un oracolo (struttura dati) che sia in grado di rispondere in tempo
costante a domande del tipo "quanti interi nell'array sono compresi fra a e
b?"(Esercizio e soluzioni a fine delle slide sull'IntegerSort).

(06/11/25). Esercitazione 1. Esercizio: dimostrare o confutare una relazione
asintotica. Esercizio di progettazione di un algoritmo che, dato un vettore
ordinato A di » interi distinti e un valore x, trova (se esistono) due elementi di A
che sommano a x. Soluzione banale con complessita quadratica, soluzione di
complessita O(n log n) e soluzione con tempo O(n).

(11/11/25). Esercitazione 2. Primo esercizio: dato un array di n numeri
unimodale, progettare un algoritmo con complessita o(n) che trova il massimo e
uno con complessita o(n log n) che lo ordina. Secondo esercizio: dato un vettore
A di n numeri, progettare un algoritmo che in tempo O(n) trova due indici i e j
con i<j che massimizzano A[j]-A[i].

(13/11/25). Strutture dati elementari: rappresentazioni indicizzate e
rappresentazioni collegate. Implementazione di un dizionario con array
ordinato/non ordinato e lista ordinata/non ordinata. Rappresentazioni di alberi.
Algoritmi di visita di un albero: profonditd versione iterativa, profondita
versione ricorsiva (preordine, postordine, ordine simmetrico), ampiezza.
Algoritmo per calcolare 1’altezza di un albero.

(18/11/25). Esercitazione 3. Esercitazione sulle visite di alberi. Progettazione di
un algoritmo che, preso un albero con valori e colori (rosso e nero), trova il
valore del cammino rosso di tipo nodo-radice di valore massimo. Altro
esercizio: progettare un algoritmo che, preso un albero e in intero h, restituisce
il numero di nodi dell'albero di profondita almeno h. Altro esercizio: preso un
albero binario con valori, calcola il numero di nodi per cui la somma dei valori
degli antenati ¢ uguale alla somma dei valori dei discendenti.

(20/11/25). 11 problema del Dizionario. Alberi binari di ricerca. Definizione.
Visita in ordine simmetrico di un BST. Ricerca, inserimento, cancellazione
(ricerca del massimo, del minimo, del predecessore e del successore di un nodo).

(25/11/25). 11 problema del Dizionario: secondo episodio. Alberi AVL:
definizione ed esempi. Dimostrazione della delimitazione superiore dell’altezza
di un albero AVL (che usa la nozione di albero di Fibonacci). Operazioni sugli
alberi AVL: search, insert, delete.

(27/11/25). Esercitazione 4. Progettare un algoritmo che, dato un vettore
ordinato A[1:n] di n bit, trova il numero k di zero presenti in A. Algoritmo con
complessita O(log n). Un miglior algoritmo con tempo O(log k). Progettare un
algoritmo con complessita lineare che, dato un vettore A[l:n] di n bit, trova
I’indice k tale che il numero di zeri in A[1:k] ¢ uguale al numero di uni in
Alk+1:n].



17.

18.

19.

20.

21.

22.

23.

24.

(02/12/25). 1l problema della Coda con priorita. d-Heap, Heap Binomiali, (cenni
sugli) Heap di Fibonacci e complessita ammortizzata.

(04/12/25). 1 Grafi (diretti, non diretti, pesati). Nozioni preliminari. Cammini,
distanze, diametro. Alberi. Grafi Euleriani. I grafi come linguaggio potente per
descrivere scenari e problemi. Esempi di scenari/problematiche descrivibili
come grafi/problemi su grafi (reti stradali/di trasporto, reti sociali, reti “delle
dipendenze”).

(09/12/25). Strutture dati per rappresentare un grafo. Matrice di adiacenza e
Liste di adiacenza. Visite di un grafo. Visita in ampiezza (BFS): cammini
minimi da una sorgente. Visita in profondita (DFS): uscire da un labirinto.

(11/12/25). Usi meno scontati della visita DFS. Catalogare per tipo gli archi del
grafo. Individuare un ciclo in grafi diretti. Grafi diretti aciclici (DAG) e
ordinamento topologico. Usare la visita DFS per trovare un ordinamento
topologico di un DAG. Componenti fortemente connesse: un algoritmo lineare
per calcolarle.

(16/12/25). Cammini minimi in grafi pesati. Il problema del calcolo dei cammini
minimi a singola sorgente. Un algoritmo veloce quando il grafo ha pesi non
negativi: 'algoritmo di Dijkstra.

(18/12/25). Esercitazione 5. Esercizi di progettazione di algoritmi su grafi.

(08/01/26). Esercitazione 6. Esercizi di progettazione di algoritmi su grafi.

(13/01/26). Riepilogo ragionato degli argomenti del primo modulo (per guardare
le cose in prospettiva). Consigli su come preparare I’esame.



