
Diario delle lezioni di Algoritmi e Strutture Dati (modulo I), a.a. 2025/26. 

 

1. (7/10/25). Introduzione al corso. Motivazioni e concetti fondamentali. Un primo 

esempio: il problema di trovare una moneta falsa (più pesante) fra n monete 

usando una bilancia a due piatti. 

 

2. (9/10/25). Il problema del calcolo dell’n-esimo numero di Fibonacci. Un 

algoritmo numerico e un algoritmo ricorsivo. Analisi della complessità 

temporale dell’algoritmo ricorsivo. Un algoritmo iterativo di complessità 

temporale O(n) e di complessità spaziale O(n) (Fibonacci3). Portare la memoria 

a O(1): Fibonacci4. Introduzione informale alla notazione asintotica. Algoritmo 

con complessità O(log n) per il calcolo dell’n-simo numero di Fibonacci. 

Discussione della complessità spaziale degli algoritmi ricorsivi Fibonacci2 e 

Fibonacci6. 

 

3. (14/10/25) Modello di calcolo RAM. Costi uniformi e logaritmici. Complessità 

caso peggiore e caso medio. Notazioni asintotiche: O-grande, Omega-grande, 

Theta. O-piccolo, Omega-piccolo. Definizioni e semplici esempi. Proprietà. 

Usare la notazione asintotica nelle analisi della complessità computazionale 

degli algoritmi.  

 

4. (16/10/25) Analisi della complessità nel caso medio: un esempio. Il problema 

della ricerca di un elemento in un insieme: ricerca sequenziale e ricerca binaria. 

Equazioni di ricorrenza. Metodo dell’iterazione. Metodo che usa l’albero della 

ricorsione. 

 

5. (21/10/25) Ancora sulle equazioni di ricorrenza. Metodo della sostituzione. 

Teorema Fondamentale delle Ricorrenze (Master). Semplici esempi. Quando 

non si può applicare. Metodo del cambiamento di variabile.  

 

6. (23/10/25). Il Problema dell’ordinamento. Un algoritmo semplice ma 

inefficiente: il Selection Sort. Un algoritmo migliore: il MergeSort. Un altro 

algoritmo che usa la tecnica divide et impera: il QuickSort: analisi del caso 

peggiore, migliore, e intuizioni sul caso medio. Discussione versione 

randomizzata del QuickSort e differenza fra complessità nel caso medio e tempo 

atteso di un algoritmo randomizzato. 

 

7. (28/10/25). Progettare algoritmi efficienti attraverso la progettazione di strutture 

dati efficienti. Un esempio: l'HeapSort - che ordina in loco n elementi in tempo 

O(n log n) nel caso peggiore. 

 

8. (30/10/25). Delimitazioni superiori e inferiori di algoritmi e problemi. Un lower 

bound alla complessità temporale necessaria per ordinare n elementi (per una 

classe di algoritmi ragionevoli, quelli basati su confronti). Un algoritmo veloce 

per ordinare interi “piccoli”: IntegerSort. 

 

9. (04/11/25). Ancora algoritmi di ordinamento non basati su confronti. Una 

variante dell’IntegerSort per ordinare n record con chiavi intere: BucketSort. Un 



algoritmo veloce per ordinare interi “grandi”: il RadixSort. Discussione del 

seguente esercizio: dato un array di n interi compresi fra 1 e k, costruire in 

tempo O(n+k) un oracolo (struttura dati) che sia in grado di rispondere in tempo 

costante a domande del tipo "quanti interi nell'array sono compresi fra a e 

b?"(Esercizio e soluzioni a fine delle slide sull'IntegerSort). 

 

10. (06/11/25). Esercitazione 1. Esercizio: dimostrare o confutare una relazione 

asintotica. Esercizio di progettazione di un algoritmo che, dato un vettore 

ordinato A di n interi distinti e un valore x, trova (se esistono) due elementi di A 

che sommano a x. Soluzione banale con complessità quadratica, soluzione di 

complessità O(n log n) e soluzione con tempo O(n).  

 

11. (11/11/25). Esercitazione 2. Primo esercizio: dato un array di n numeri 

unimodale, progettare un algoritmo con complessità o(n) che trova il massimo e 

uno con complessità o(n log n) che lo ordina. Secondo esercizio: dato un vettore 

A di n numeri, progettare un algoritmo che in tempo O(n) trova due indici i e j 

con i<j che massimizzano A[j]-A[i]. 

 

12.  (13/11/25). Strutture dati elementari: rappresentazioni indicizzate e 

rappresentazioni collegate. Implementazione di un dizionario con array 

ordinato/non ordinato e lista ordinata/non ordinata. Rappresentazioni di alberi. 

Algoritmi di visita di un albero: profondità versione iterativa, profondità 

versione ricorsiva (preordine, postordine, ordine simmetrico), ampiezza. 

Algoritmo per calcolare l’altezza di un albero. 

 

13. (18/11/25). Esercitazione 3. Esercitazione sulle visite di alberi. Progettazione di 

un algoritmo che, preso un albero con valori e colori (rosso e nero), trova il 

valore del cammino rosso di tipo nodo-radice di valore massimo. Altro 

esercizio: progettare un algoritmo che,  preso un albero e in intero h, restituisce 

il numero di nodi dell'albero di profondità almeno h. Altro esercizio: preso un 

albero binario con valori, calcola il numero di nodi per cui la somma dei valori 

degli antenati è uguale alla somma dei valori dei discendenti. 

 

14. (20/11/25). Il problema del Dizionario. Alberi binari di ricerca. Definizione. 

Visita in ordine simmetrico di un BST. Ricerca, inserimento, cancellazione 

(ricerca del massimo, del minimo, del predecessore e del successore di un nodo).  

 

15. (25/11/25). Il problema del Dizionario: secondo episodio. Alberi AVL: 

definizione ed esempi. Dimostrazione della delimitazione superiore dell’altezza 

di un albero AVL (che usa la nozione di albero di Fibonacci). Operazioni sugli 

alberi AVL: search, insert, delete. 

 

16. (27/11/25). Esercitazione 4. Progettare un algoritmo che, dato un vettore 

ordinato A[1:n] di n bit, trova il numero k di zero presenti in A. Algoritmo con 

complessità O(log n). Un miglior algoritmo con tempo O(log k). Progettare un 

algoritmo con complessità lineare che, dato un vettore A[1:n] di n bit, trova 

l’indice k tale che il numero di zeri in A[1:k] è uguale al numero di uni in 

A[k+1:n].   



 

17. (02/12/25).  Il problema della Coda con priorità. d-Heap, Heap Binomiali, (cenni 

sugli) Heap di Fibonacci e complessità ammortizzata. 

 

18. (04/12/25). I Grafi (diretti, non diretti, pesati). Nozioni preliminari. Cammini, 

distanze, diametro. Alberi. Grafi Euleriani. I grafi come linguaggio potente per 

descrivere scenari e problemi. Esempi di scenari/problematiche descrivibili 

come grafi/problemi su grafi (reti stradali/di trasporto, reti sociali, reti “delle 

dipendenze”).  

 

19. (09/12/25). Strutture dati per rappresentare un grafo. Matrice di adiacenza e 

Liste di adiacenza. Visite di un grafo. Visita in ampiezza (BFS): cammini 

minimi da una sorgente. Visita in profondità (DFS): uscire da un labirinto. 

 

20. (11/12/25). Usi meno scontati della visita DFS. Catalogare per tipo gli archi del 

grafo. Individuare un ciclo in grafi diretti. Grafi diretti aciclici (DAG) e 

ordinamento topologico. Usare la visita DFS per trovare un ordinamento 

topologico di un DAG. Componenti fortemente connesse: un algoritmo lineare 

per calcolarle. 

 

21. (16/12/25). Cammini minimi in grafi pesati. Il problema del calcolo dei cammini 

minimi a singola sorgente. Un algoritmo veloce quando il grafo ha pesi non 

negativi: l'algoritmo di Dijkstra.  

 

22. (18/12/25). Esercitazione 5. Esercizi di progettazione di algoritmi su grafi. 

 

23. (08/01/26). Esercitazione 6. Esercizi di progettazione di algoritmi su grafi. 

 

24. (13/01/26). Riepilogo ragionato degli argomenti del primo modulo (per guardare 

le cose in prospettiva). Consigli su come preparare l’esame.   


