
Diario delle lezioni di Algoritmi e Strutture Dati (modulo I), a.a. 2025/26.

1. (7/10/25). Introduzione al corso. Motivazioni e concetti fondamentali. Un primo

esempio: il problema di trovare una moneta falsa (più pesante) fra n monete

usando una bilancia a due piatti.

2. (9/10/25). Il problema del calcolo dell’n-esimo numero di Fibonacci. Un

algoritmo numerico e un algoritmo ricorsivo. Analisi della complessità

temporale dell’algoritmo ricorsivo. Un algoritmo iterativo di complessità

temporale O(n) e di complessità spaziale O(n) (Fibonacci3). Portare la memoria

a O(1): Fibonacci4. Introduzione informale alla notazione asintotica. Algoritmo

con complessità O(log n) per il calcolo dell’n-simo numero di Fibonacci.

Discussione della complessità spaziale degli algoritmi ricorsivi Fibonacci2 e

Fibonacci6.

3. (14/10/25) Modello di calcolo RAM. Costi uniformi e logaritmici. Complessità

caso peggiore e caso medio. Notazioni asintotiche: O-grande, Omega-grande,

Theta. O-piccolo, Omega-piccolo. Definizioni e semplici esempi. Proprietà.

Usare la notazione asintotica nelle analisi della complessità computazionale

degli algoritmi.

4. (16/10/25) Analisi della complessità nel caso medio: un esempio. Il problema

della ricerca di un elemento in un insieme: ricerca sequenziale e ricerca binaria.

Equazioni di ricorrenza. Metodo dell’iterazione. Metodo che usa l’albero della

ricorsione.

5. (21/10/25) Ancora sulle equazioni di ricorrenza. Metodo della sostituzione.

Teorema Fondamentale delle Ricorrenze (Master). Semplici esempi. Quando

non si può applicare. Metodo del cambiamento di variabile.

6. (23/10/25). Il Problema dell’ordinamento. Un algoritmo semplice ma

inefficiente: il Selection Sort. Un algoritmo migliore: il MergeSort. Un altro

algoritmo che usa la tecnica divide et impera: il QuickSort: analisi del caso

peggiore, migliore, e intuizioni sul caso medio. Discussione versione

randomizzata del QuickSort e differenza fra complessità nel caso medio e tempo

atteso di un algoritmo randomizzato.

7. (28/10/25). Progettare algoritmi efficienti attraverso la progettazione di strutture

dati efficienti. Un esempio: l'HeapSort - che ordina in loco n elementi in tempo

O(n log n) nel caso peggiore.

8. (30/10/25). Delimitazioni superiori e inferiori di algoritmi e problemi. Un lower

bound alla complessità temporale necessaria per ordinare n elementi (per una

classe di algoritmi ragionevoli, quelli basati su confronti). Un algoritmo veloce

per ordinare interi “piccoli”: IntegerSort.

9. (04/11/25). Ancora algoritmi di ordinamento non basati su confronti. Una

variante dell’IntegerSort per ordinare n record con chiavi intere: BucketSort. Un

algoritmo veloce per ordinare interi “grandi”: il RadixSort. Discussione del

seguente esercizio: dato un array di n interi compresi fra 1 e k, costruire in

tempo O(n+k) un oracolo (struttura dati) che sia in grado di rispondere in tempo

costante a domande del tipo "quanti interi nell'array sono compresi fra a e

b?"(Esercizio e soluzioni a fine delle slide sull'IntegerSort).

10. (06/11/25). Esercitazione 1. Esercizio: dimostrare o confutare una relazione

asintotica. Esercizio di progettazione di un algoritmo che, dato un vettore

ordinato A di n interi distinti e un valore x, trova (se esistono) due elementi di A

che sommano a x. Soluzione banale con complessità quadratica, soluzione di

complessità O(n log n) e soluzione con tempo O(n).

11. (11/11/25). Esercitazione 2. Primo esercizio: dato un array di n numeri

unimodale, progettare un algoritmo con complessità o(n) che trova il massimo e

uno con complessità o(n log n) che lo ordina. Secondo esercizio: dato un vettore

A di n numeri, progettare un algoritmo che in tempo O(n) trova due indici i e j

con i<j che massimizzano A[j]-A[i].

12. (13/11/25). Strutture dati elementari: rappresentazioni indicizzate e

rappresentazioni collegate. Implementazione di un dizionario con array

ordinato/non ordinato e lista ordinata/non ordinata. Rappresentazioni di alberi.

Algoritmi di visita di un albero: profondità versione iterativa, profondità

versione ricorsiva (preordine, postordine, ordine simmetrico), ampiezza.

Algoritmo per calcolare l’altezza di un albero.

13. (18/11/25). Esercitazione 3. Esercitazione sulle visite di alberi. Progettazione di

un algoritmo che, preso un albero con valori e colori (rosso e nero), trova il

valore del cammino rosso di tipo nodo-radice di valore massimo. Altro

esercizio: progettare un algoritmo che, preso un albero e in intero h, restituisce

il numero di nodi dell'albero di profondità almeno h. Altro esercizio: preso un

albero binario con valori, calcola il numero di nodi per cui la somma dei valori

degli antenati è uguale alla somma dei valori dei discendenti.

14. (20/11/25). Il problema del Dizionario. Alberi binari di ricerca. Definizione.

Visita in ordine simmetrico di un BST. Ricerca, inserimento, cancellazione

(ricerca del massimo, del minimo, del predecessore e del successore di un nodo).

15. (25/11/25). Il problema del Dizionario: secondo episodio. Alberi AVL:

definizione ed esempi. Dimostrazione della delimitazione superiore dell’altezza

di un albero AVL (che usa la nozione di albero di Fibonacci). Operazioni sugli

alberi AVL: search, insert, delete.

16. (27/11/25). Esercitazione 4. Progettare un algoritmo che, dato un vettore

ordinato A[1:n] di n bit, trova il numero k di zero presenti in A. Algoritmo con

complessità O(log n). Un miglior algoritmo con tempo O(log k). Progettare un

algoritmo con complessità lineare che, dato un vettore A[1:n] di n bit, trova

l’indice k tale che il numero di zeri in A[1:k] è uguale al numero di uni in

A[k+1:n].

17. (02/12/25). Il problema della Coda con priorità. d-Heap, Heap Binomiali, (cenni

sugli) Heap di Fibonacci e complessità ammortizzata.

18. (04/12/25). I Grafi (diretti, non diretti, pesati). Nozioni preliminari. Cammini,

distanze, diametro. Alberi. Grafi Euleriani. I grafi come linguaggio potente per

descrivere scenari e problemi. Esempi di scenari/problematiche descrivibili

come grafi/problemi su grafi (reti stradali/di trasporto, reti sociali, reti “delle

dipendenze”).

19. (09/12/25). Strutture dati per rappresentare un grafo. Matrice di adiacenza e

Liste di adiacenza. Visite di un grafo. Visita in ampiezza (BFS): cammini

minimi da una sorgente. Visita in profondità (DFS): uscire da un labirinto.

20. (11/12/25). Usi meno scontati della visita DFS. Catalogare per tipo gli archi del

grafo. Individuare un ciclo in grafi diretti. Grafi diretti aciclici (DAG) e

ordinamento topologico. Usare la visita DFS per trovare un ordinamento

topologico di un DAG. Componenti fortemente connesse: un algoritmo lineare

per calcolarle.

21. (16/12/25). Cammini minimi in grafi pesati. Il problema del calcolo dei cammini

minimi a singola sorgente. Un algoritmo veloce quando il grafo ha pesi non

negativi: l'algoritmo di Dijkstra.

22. (18/12/25). Esercitazione 5. Esercizi di progettazione di algoritmi su grafi.

23. (08/01/26). Esercitazione 6. Esercizi di progettazione di algoritmi su grafi.

24. (13/01/26). Riepilogo ragionato degli argomenti del primo modulo (per guardare

le cose in prospettiva). Consigli su come preparare l’esame.

